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Abstract

Currently, most biometric methods

mainly use single features, making them

easily forged and cracked. In this study, a

novel triple-layers biometric recognition

method, based on photoacoustic micros-

copy, is proposed to improve the security

of biometric identity recognition. Using

the photoacoustic (PA) dermoscope,

three-dimensional absorption-structure

information of the fingers was obtained.

Then, by combining U-Net, Gabor filtering, wavelet analysis and morphologi-

cal transform, a lightweight algorithm called photoacoustic depth feature rec-

ognition algorithm (PADFR) was developed to automatically realize

stratification (the fingerprint, blood vessel fingerprint and venous vascular),

extracting feature points and identity recognition. The experimental results

show that PADFR can automatically recognize the PA hierarchical features

with an average accuracy equal to 92.99%. The proposed method is expected to

be widely used in biometric identification system due to its high security.

KEYWORD S

biometric recognition, finger vascular structure, feature recognition algorithm,
photoacoustic microscopy

1 | INTRODUCTION

Biometric-based personal identification technology including
fingerprinting and face recognition is the basis of informa-
tion security, and also a hot issue in the field of biomedical
engineering and artificial intelligence [1, 2]. Although bio-
metric authentication technology is stable and accurate in
recognition, it confronts a common problem—fraud or theft
[3]. For example, fingerprint can be acquired from an object
surface or through violence, which can spoof the fingerprint
identification system [4]. Similarly, the frontal face photo is

easily acquired from secret camera, video, and even facial
plastic surgery. Therefore, it is necessary to find an effective
way to reduce the risk caused by fake biometric, especially
for the personal identification in some sensitive places
(e.g., bank, jail, and airport) [5]. Currently, near-infrared
imaging of finger or palm vein network was proposed as a
popular biometric authentication mode [6]. But due to the
strong scattering of tissues, vein images usually have low
signal-to-noise ratio (SNR) and low resolution, which makes
it complex for post processing. Meanwhile, since the vein
network is relatively simple and the diameter of vessel is
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large, near-infrared imaging biometric authentication has
faced various threats and attacks from artificially forged
venous images, suggesting that single biological authentica-
tion is not safe.

Previous studies were proposed to use the dual
authentication mode combining features of fingerprint
and veins to carry out biometric identification [7]. Due to
the limitation of tissue light scattering characteristics, the
penetration depth of the conventional optical imaging is
limited, which makes it difficult to obtain the blood ves-
sel information of the deep layer of the finger. Doppler
ultrasound [8] and near-infrared imaging [6] can obtain
deep blood vessel information, but extracting fingerprints
on the surface of the finger and achieving high-
performance blood vessel imaging are difficult for them.
Therefore, an effective imaging method for acquiring fea-
tures of both fingerprint and veins, which can maintain
good resolution at depth, is needed.

Photoacoustic microscopy (PAM) is a hybrid imaging
technique with the advantages of the optical high-
contrast and the ultrasonic deep penetration [9–20]. In
view of the strengths of the spectroscopic-based specific-
ity, PAM can offer label-free high-resolution imaging of
melanin and hemoglobin at the depth of several

millimeters inside tissue [21–28]. Here, a triple biometric
pattern method based on PA imaging was proposed for
the first time. In this study, we obtained three-
dimensional (3D) absorption-structure information of the
fingers with the help of the photoacoustic dermoscope
(PAD). During the experiment, subjects placed their fin-
gers directly on top of the imaging window. After scan-
ning, the 3D image of the finger was layered using Time-
of-Flight (ToF). Besides, a new feature extraction algo-
rithm including U-Net based on feature extraction, Gabor
filter and features recognizing filter, was also developed,
which is suitable for three-layer network processing [29].
After statistical analysis of triple-layers biometric recogni-
tion, we obtained high authentication accuracy and
robustness.

2 | MATERIAL AND METHODS

The proposed triple-layers biometric recognition method
consists of two modules: PA sensing hardware and PA
identity recognition process. As shown in Figure 1, the
sensing hardware system is based on PAD developed in
our previous work in 2020 [30]. The PA signal excitation

FIGURE 1 Framework of the triple-layers biometric recognition method, which consists of two modules: photoacoustic (PA) sensing

hardware and PA identity recognition process
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source is a pulsed laser (DTL-314QT, Laser-export), oper-
ating at wavelength of 532 nm with ~7 ns duration and
repetition rate of 10 kHz. Through the spatial filter sys-
tem (KT310/M, Thorlabs), a Gaussian beam is produced
and coupled into a single-mode fiber (460HP, Thorlabs)
by a fiberport coupler (PAF-X-7-A, Thorlabs). Then, the
fiber guides the laser into a 2D-scanner (LS2-25 T,
Jiancheng Optics) probe. After the laser propagates
through the single mode fiber, it was collimated by a fiber
collimator (F240FC-532, Thorlabs, NA = 0.51), and then
the laser beam was focused by aspheric lens (AL1225H,
Thorlabs, NA = 0.20) to illuminate the sample. The sub-
ject's fingers are placed on the top of a water tank, which
is filled with deionized water and encapsulated by thin
film. The laser synchronizes the scanning and data acqui-
sition systems. The linear motor drives the scanning sys-
tem and the receiving system together, and moves at an
adjustable speed which depends on the experimental
requirements. The PA signals, received by a self-made
ultrasonic transducer, are amplified by an amplifier
(50 dB gain, LNA-650, RF Bay, USA) and digitized with a
data acquisition card (M3i.3221, Spectrum) at a sampling
rate of 200 MS/s. The acquired PA data are stored by a
LabVIEW program for post image reconstruction.

The PADFR algorithm was used to extract features,
which consists of the following steps (as shown in
Figure 2). First, the image layering step is based on Time-
of-Flight (ToF) of an A-line signal. By setting the vector
V = [l1, l2, l3] (in refers to the start point of each layer)
empirically, the 3D images were divided into three layers.
In the image layering process, we choose V = [2, 22, 72].
Second, the layered images are segmented by the pre-
trained U-Net proposed by Dr. Olaf Ronneberge [29], and

the U-Net was refined by using our own dataset (20 sam-
ples) for transfer learning [31]. Due to the limitation of
scanning speed, the photoacoustic fingerprint with obvi-
ous features was difficult to be extracted under the cur-
rent system performance. After repeated experiments,
20 groups of photoacoustic vascular fingerprints with
obvious features were selected for feature extraction. It
was not enough to use 20 groups of data for deep learning
training. The pre-trained U-Net was used [29]. The U-Net
was obtained by using 60 groups of retinal blood vessels
for vascular stratification training. With the help of such
a network model of pre-training, samples based on trans-
fer learning were obtained to reduce the training diffi-
culty. After the completion of the training, three groups
of remaining photoacoustic vascular fingerprint were
selected for the test. The mean square error (MSE) of the
fingerprint, blood vessel fingerprint and venous vascular
between real value and after U-Net processing were
0.2422, 0.2768 and 0.1792. Third, the Gabor filter was
used to remove noises. In order to use Gabor filter, the
overall frequency and orientation of need to be obtained
at first. And they were calculated by wavelet analysis and
sobel filtering, respectively [32]. In the fourth step, mor-
phology transform in OpenCV including opening-and-
closing operation was used to find the mask of region of
interest (ROI). This is practical in image processing for
denoising. The skeletons of the images were extracted by
using morphology operation skimage.morphology.skele-
tonize in Python. Last, by employing a 3� 3 operator, the
number of changes of each point in the skeleton image
with its neighboring points was calculated. If the number
of neighboring changes around object pixel is equal to
2, this pixel is an endpoint, and if the number is equal

FIGURE 2 Flow diagram of the image features extraction and matching
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to 6, it is a bifurcation. And all of these features are
labeled on the graph. At the same time, the whorls were
also captured and marked. These features are necessary
for fingerprint identification and matching, which can be
achieved by calculating the spatial distance (sd) and
direction distance (dd) shown at Equation (1) [33]. Given
two tolerance parameters ro and ;o for error compensat-
ing, if the spatial distance (sd) and direction distance
(dd) between the feature points of two images satisfy the
Equation (1), then two images match successfully.

sd m0
j,mi

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0j� xi

� �2
þ y0j� yi
� �2

r
≤ ro

dd m0
j,mi

� �
¼min θj�θi

�� ��,360� θj�θi
�� ��� �

≤ ;o
ð1Þ

3 | RESULTS

The PA images of the finger of one subject are shown in
Figure 3. Figure 3A is a single frame from the 3D-
rendered PA data and Figure 3B is a B-scan image along
the depth direction with an imaging depth of about
1 mm. The epidermis, vascular fingerprints, and vessels
were marked by yellow, green, and blue arrows

respectively in Figure 3A,B. In order to show the best
results of TOF and verify the accuracy of the U-Net strati-
fication results, here we adjusted the threshold to layer
the 3D image. Based on Lambert–Beer law, laser decays
exponentially as it enters the tissue, thus the deep signal
is appropriately compensated empirically. Taking this sig-
nal as the reference layer, the upward tomographic layer
was identified as the stratum corneum, and the down-
ward tomographic layer was identified as the vascular vil-
lus layer and vascular layer. In this work, each B-scan
image was composed of 500 A-line signals. After experi-
mental testing, tomographic layer [1 to 2] were selected
upward to be identified as the cuticle layer, tomographic
layer [3 to 22] were selected downward to be identified as
the vascular villus layer, and tomographic layer [23 to 72]
were selected downward to identify as the vascular net-
work layer. The depth-coded images of different depths
are shown in Figure 3C-E. The range of the image is
5 mm � 5 mm. The length of B-scan was 5 mm. The
scanning speed of the motor was 10 mm/s. A total of
500 B-scans were collected, so the time required for a sin-
gle scan was about 250 s. Figure 3C shows the vascular
fingerprint of the epidermal-dermal junction. In this
region, we observe small absorbing spots arranged in a
stripe pattern that are separated by approximately

FIGURE 3 In vivo imaging of human finger. A, 3D-finger image. B, The cross-sectional photoacoustic (PA) image of human finger. In A

and B, the fingerprint, vascular fingerprints, and vessels were marked by yellow, green, and blue arrows, respectively. C-E, PA images of

human finger at different depths. F, Diagram of skin layers and vascular network
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0.9 mm, which is based on fingerprint distribution.
Figure 3F presents a diagram of skin layers with
corresponding vascular network. Each panel is integrated
over a certain depth range, showing the epidermis (yel-
low frame), the dermal papillae with vascular finger-
prints (green frame), and the dermis with deep vascular
plexus (blue frame).

The schematic diagram of image features extraction
and analysis are shown in Figure 4. Figure 4A shows PA
images of fingerprint, vascular fingerprint and vascular
network after multi-layered decomposition. The distribu-
tion of vascular fingerprints is consistent with finger-
prints and the dermal papillae distribute in the position

of the fingerprint ridges. Figure 4B shows the images
after U-Net processing for Figure 4A. It should be noted
that the lines of vascular fingerprint images are smoother
than fingerprint and have superior connectivity (the yel-
low arrows and red boxes) because fingerprints are easier
to be damaged, which indicates high security. Figure 4C
is the result of the morphological operation processing of
Figure 4B, showing the masks of ROI. The images are
more reasonable after further processing. For example,
some wrongly identified breakpoints are reconnected,
which was marked by circles. Figure 4 is the skeleton
image of Figure 4C. The biometric features (contains end-
points, whorls and bifurcations) extracted images of

FIGURE 4 Schematic diagram of image features extraction and statistical analysis. The feature extraction process for Template is shown

in A-E. A, Photoacoustic (PA) images after multi-layered decomposition. B, U-Net processed images of A. C, Morphological processed

images of B. D, Skeleton extracted images of C. E, Biometric features (contains endpoints, whorls and bifurcations) extracted images of D. F,

Biometric feature extraction images of the input images of Input 1. G, Biometric feature extraction images of Input 2. H, Feature statistics of

the triple-layers biometric recognition method (fingerprint, vascular fingerprint and vascular network) for the Template and Input 1, as well

as the Input 2
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(d) are shown in Figure 4E. The endpoint was indicated
by a blue dot, the bifurcation point was indicated by a
green dot, and the whorl was marked by a green grid.
The feature extraction process of Template (subject 1) is
shown in A-E. The biometric feature extraction images of
the input images of Input 1 (subject 1) are shown in
Figure 4F and the biometric feature extraction images of
Input 2 (subject 2) are shown in Figure 4G. The feature
statistics of the triple recognition mode (fingerprint, vas-
cular fingerprint and vascular network) for the Template,
Input 1, and Input 2, are shown in Figure 4H. Due to the
influence of dust and other factors, it can be seen that
the features of the Input 1 are not exactly the same as
those of the template. In addition, through the compari-
son of Input 1 and Input 2, it can be seen that the fea-
tures of the same part of fingers of different people are
different. The basic error formula for the preliminary cal-
culation was used to calculate accuracy. The total num-
ber of features of Template (A) and Input 1 (B) were
counted. Then the equation below was used to calculate
the relative error (RE) and accuracy of the set of data.

Accuracy¼ 1�B�A
A

� 	
�100% ð2Þ

By calculating five groups of input and stored data, the
average accuracy of triple recognition achieves 92.99%. The
average matching accuracy of each layer was also calcu-
lated. The average accuracy of fingerprint, vascular finger-
print and vascular network were 81.82%, 83.16% and
92.86%. The triple-layers biometric recognition method has
greater number of eigenvalues than the single biometric
recognition method and thus has higher accuracy.

4 | DISCUSSION AND
CONCLUSIONS

Further efforts can be made to improve the triple-layers
biometric recognition method. Due to the limitation of sin-
gle point scanning motion by linear motor, the imaging
speed is low. The imaging time can be shortened by fully
use of linear array and an additional voice coil motor [34].
In addition, the whole imaging platform is still relatively
bulky. To mitigate the setup, high-energy light-emitting
diodes (LEDs) or laser diodes arrays which are smaller and
possess higher energy efficiency than flashlamp-pumped
lasers, can be used [35]. By using LEDs or laser diodes with
high repetition frequency, the acquisition time can be
reduced as well. Besides, it is necessary to display the
results of identity recognition in real time. Real-time imag-
ing methods such as array imaging and deep learning
decoder can fill this gap. At the same time, there were some

recognition errors in the algorithm process, which can be
compensated by multiple acquisitions. The future algo-
rithm is not only based on KNN classification recognition
[36], but also can further improve the accuracy by using
deep learning fingerprint recognition. Overall, the triple-
layers biometric recognition method will be complete by
increasing the imaging speed to collect sufficient samples.

In conclusion, we have successfully implemented a
new mode of biometric recognition. Compared with the
single biometric recognition method, it has higher accu-
racy and security. By simply placing a finger above the
imaging window, sufficient information of fingerprint
and blood vessel can be obtained. The images of
microvessels have a higher resolution than those by infra-
red imaging, which allows a more accurate view of vascu-
lar density. Because of the increasing demand for securer
identification, the triple-layers biometric recognition
method will have a broad application in various areas.
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